M-math 2nd year Final Exam Subject : Probability Theory

Time : 3.00 hours

Max.Marks 50.

1. Let $(X_t, \mathcal{F}_t)_{t \ge 0}$ be a super martingale. Let $\sigma \le \tau$ be two bounded stopping times. Suppose $\sigma, \tau \in \{\frac{k}{2^n}; k = 0, 1, 2, \cdots, n = 1, 2, \cdots\}$. Using the discrete time result show that $E[X_\tau | \mathcal{F}_\sigma] \le X_\sigma, a.s.$ (10)

- 2. Let $(X_t)_{t>0}$ be right continuous and (\mathcal{F}_t) adapted. Then
 - (a) Show that (X_t) is progressively measurable i.e. for every $t \ge 0$ the map $(s, \omega) \to X_s(\omega) : [0, t] \times \Omega \to \mathbb{R}$ is $\mathcal{B}[0, t] \times \mathcal{F}_t$ measurable.
 - (b) Suppose $\tau : \Omega \to [0, \infty)$ is an (\mathcal{F}_t) stopping time. Use part (a) to show that X_{τ} is \mathcal{F}_{τ} measurable.

(7+8)

- 3. Let $(X_t, \mathcal{F})_{t\geq 0}$ be a martingale or a non negative sub martingale with right continuous paths. Let $|X|_T^* := \sup_{t\leq T} |X_t|$. Show that
 - (a) For every $p \ge 1, \lambda > 0$

$$\lambda^p P\{|X|_T^* \ge \lambda\} \le E|X_T|^p.$$

(b) For p > 1,

$$E|X|_T^* \le (\frac{p}{p-1})^p E|X_T|^p.$$

Hint : by right continuity the supremum over [0, T) of (X_t) is the supremum over the rationals in [0, T). (6+6)

4. Let $(X_t, \mathcal{F})_{t\geq 0}$ be a sub-martingale. Suppose that $\sup_{t\geq 0} EX_t^+ < \infty$. Show that there exists $X_\infty \in L^1$ such that $X_t \to X_\infty$ almost surely. Hint : Prove an upcrossing inequality and use that to show convergence. (13)